
BROUGHT TO YOU IN PARTNERSHIP WITH

1

376

REFCARD | MAY 2022

Cloud-Based
Automated Testing
Essentials
Scaling the Benefits of Low-Code Test Automation

JUSTIN ALBANO
SOFTWARE ENGINEER, IBM

CONTENTS

• Automated Testing Fundamentals

− V-Model

− Pipelines

− Automating Tests

• Key Concepts and Features of
Cloud-Based Automated Testing

− Cloud-Based Automated
Testing Fundamentals

− Benefits of Cloud-Based
Automated Testing

− Considerations for
Cloud-Based Solutions

− Prominent Tools

• Conclusion

As software engineering has advanced over the past few decades,

automated testing has taken hold as the primary mechanism

for validating applications. With the introduction of Continuous

Integration (CI), Continuous Delivery (CD), and testing pipelines,

developers can now automatically test and deploy their applications

by simply committing a change to a repository. While lower-level tests

can be easier to automate in the same language as the code itself,

system and acceptance tests have been more difficult to automate

due to their wider scope and abstraction.

Low-code and no-code tools have greatly reduced the burden on

testers, but even these tools can require extensive understanding of

the deployment environment and infrastructure. Cloud-based

automated testing tools, on the other hand, provide a valuable

addition to our toolbox and allow us to create and access our tests

from anywhere without stressing about infrastructure.

In this Refcard, we will explore the basis of automated testing and delve

into the details of how cloud-based automated testing solutions can

dramatically improve our test suites and reduce the burden on both

developers and testers.

AUTOMATED TESTING FUNDAMENTALS
The goal of software testing — whether automated or manual — is to

ensure that our application or system adheres to its specifications.

A specification can be as simple as a component producing a specific

or discrete result, or it can be as complex as a component completing

its execution within a statistically bound period of time.

In most cases, our systems will have multiple levels of specifications,

with each successively lower level focusing on a smaller subsection

of the system. For example, our highest-level specifications will likely

focus on the system as a whole, executing in a scaled-down clone of

the production environment, while the lowest-level specifications

may focus on a single class or method. The tests that we create must,

therefore, reflect the granularity of the specifications being tested.

V-MODEL

Generally, our development will have four phases — or levels of

specifications and corresponding tests:

1. Unit – Focuses on individual classes and methods.

2. Integration – Focuses on interfaces and interactions

between units.

3. System – Focuses on the entire system while mocking

external interactions.

4. Acceptance – Focuses on the entire system executing in an

environment that mimics the production environment.

https://www.mabl.com/trial-registration?utm_source=dzone&utm_medium=print

Scaling Testing with
Intelligent Test Automation

Test automation is a key enabler - or inhibitor to
- realizing the potential of DevOps. Automation is
critical to innovating with speed and quality, and
we’ve spent innumerable hours of engineering
effort on sophisticated test automation suites. But,
lengthy test creation times and hours spent on
maintenance prevent us from scaling test coverage.

In order to achieve quality goals, we need testing
that is intelligent and accessible to everyone. Built
for high-velocity teams, mabl’s low-code, intelligent
test automation solution helps teams scale their
quality efforts.

TRY MABL FOR FREE:

mabl.com/trial

Contribute to quality
and velocity with easy
test creation

Reduce maintenance
with reliable execution
and insights

Eliminate infrastructure
management with a
native cloud solution

Increase test coverage
across devices and
browsers

Integrate testing directly
into your development
pipeline

Democratize testing
with an accessible low-
code interface

90%
Average increase
in test coverage

3x
Faster test creation
speed

40%
Fewer bugs in
production

50%
Reduction in time
to deployment

https://www.mabl.com/trial-registration?utm_source=dzone&utm_medium=print

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | CLOUD-BASED AUTOMATED TESTING ESSENTIALS

REFCARD | MAY 2022 3

We can visualize these phases using the V-Model:

Figure 1

Tests can be executed either manually or automatically. While manual

tests have their place — often as in visual or User Interface (UI) testing —

they have been largely phased out, and for good reason. Manual tests

are usually:

• Slow – Tests can only be executed as fast as a human can

complete a test and record the results.

• Inconsistent – It is difficult to repeat a test the same way

twice, which introduces variance and irregularities.

• Tedious – Following the same steps each time a test is

executed can become monotonous over time and cause

testers to lose concentration.

In contrast, automated testing — creating repeatable tests that can

be executed on demand — has significant advantages over manual

testing, including:

• Speed – Tests execute like code.

• Consistency – Tests are executed in the same environment

every time.

• Repeatability – Tests are executed the same way every time.

• Integration – Tests and results can be easily integrated with

other tools.

PIPELINES

When a significant number of tests, called a suite, are accumulated for

each phase, we can further automate our testing by creating a pipeline.

A pipeline is a set of steps that we can automatically execute to exercise

our system. Each stage in the pipeline generally corresponds to a phase

of testing. For example, the pipeline (or a variation of it) in Figure 2 is

common when testing larger systems.

SEE FIGURE 2 IN NEXT COLUMN

Figure 2

At its genesis, a single change to our system — encapsulated as a

commit to our version control system — results in a new execution of our

pipeline. Each stage, from left to right, walks higher up the right side

of the V-Model. In the case of the pipeline above, we may even include

performance or accessibility tests (e.g., the user acceptance testing,

capacity testing, and staging stages), as well as a deploying stage that

ultimately deploys our system into its production environment.

Regardless of the specifics of each stage and the combination of stages

we utilize, when one stage of the pipeline successfully completes, the

next stage executes. Once the entire pipeline completes, we know that

the changes we made in our commit meet all of our specifications.

The faster the pipeline executes, the faster we get feedback about our

commit. Therefore, the more stages that we automate, the quicker we

can get feedback about our change.

AUTOMATING TESTS

Lower-level stages, such as unit and integration testing, are usually

easy to automate. At these points in the V-Model, tests are typically

written by the development team in the same programming language

as the components being exercised. As we work our way further up the

V-Model toward system and acceptance testing, this is no longer the

case. As the tests become more abstract, more often than not, non-

developers will write the tests.

For example, it is common that the stakeholders in a product may

write the acceptance tests in a natural language, such as English. Since

these tests are being written by non-developers, automating them can

be difficult. To solve this problem, we can use automated testing tools

that translate natural language into automated actions, or even allow

a tester to drag and drop actions to create tests. One of the best tooling

options available is cloud-based test automation software.

KEY CONCEPTS AND FEATURES OF
CLOUD-BASED AUTOMATED TESTING
Automated testing tools can largely be divided into three categories:

1. Code-based – Uses a programming language to represent

the actions executed when a test is run. Examples include

Cucumber and Selenium. The advantage of these tools is that

test specifications can be written in natural language, while

the test itself can be executed in code, allowing for seamless

integration with the product under test.

https://cucumber.io/
https://www.selenium.dev/

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | CLOUD-BASED AUTOMATED TESTING ESSENTIALS

REFCARD | MAY 2022 4

2. Low-code – Uses a minimal amount of programming to

create tests. This category has the advantage of requiring

no code — specifically, a lack of extensive programming

experience — while also providing the granularity of the code-

based approach. Examples include mabl and AutonomIQ.

3. No-code – Does not utilize code to execute tests. Examples

include Katalon Studio and Perfecto. No-code tools have the

advantage of requiring no programming experience to create

tests, but usually at the cost of granularity and specificity

(i.e., results in more abstract tests).

A large portion of automated tests are written using the code-based

approach since this is a natural extension of existing automated testing

processing. For example, a stakeholder will create a specification in

a format derived from natural language, such as Gherkin, and then

the development team will implement the steps in this specification

in code. While this approach allows the development team to

continue using the programming languages they are familiar with

to implement the tests, it requires that the development team be

involved in the process of creating high-level tests.

Ideally, stakeholders (without programming experience) should be

able to create tests without needing to write any low-level code or

calling on the development team to write low-level code on their

behalf. While no-code tools do exist, low-code tools offer the benefit

of more natural integration, while requiring much less technical input

from stakeholders.

In particular, cloud-based low-code testing tools provided a unique

and valuable mechanism for creating low-code tests.

CLOUD-BASED AUTOMATED TESTING

FUNDAMENTALS

Unlike many other automated testing tools, cloud-based tools do

not reside within the infrastructure of our company. Instead, these

tools live on the internet and interact with our systems remotely, as

illustrated below:

Figure 3

To create a test, a tester uses the tool's UI to create a workflow — or

a set of actions — and states the expected results. This could mean

dragging and dropping a set of clicks and actions, or detailing the

endpoint and payload of an Application Programming Interface (API)

call. Once this workflow is established, the tester then creates a set of

expected results, against which the actual results of the workflow can

be verified. This test case is then stored in the cloud.

When executing a test, the tester can either run the entire suite of tests

or some subset of tests. The tool then interacts with our deployed

product and executes the workflows. Once the workflows are

completed, the results are stored in the cloud. The tool can then

compare the results against the expected results and show us which

test cases passed and which ones failed.

In many cases, the tool can even drill down into which specific parts

of a workflow failed and provide us greater insight into why our test

cases failed. For example, some tools will provide a difference

comparison (diff) between the actual and expected results of an API

call. This allows us to focus on the output that differed from the

expected results, rather than focus on the entirety of the output

(which can be very large for some API calls). Many of these cloud-based

tools will also include integration and support repositories such as

GitHub and GitLab, as well as CI/CD tools like Jenkins.

Cloud-based automated testing tools have several significant

advantages over their native peers, such as scalability and ease of

access. However, it is also important to consider other aspects (e.g.,

security, integration) with existing infrastructure before committing

to a cloud-based solution.

BENEFITS OF CLOUD-BASED AUTOMATED TESTING

The benefits of cloud-based automated testing include:

• Scalability – The tool automatically grows as the product

grows. Testers do not need to increase the resource pool at their

organization to support testing as the product begins to grow in

size and scope.

• Availability – Testers benefit from the vast resource pool of

the provider, which minimizes the number of interruptions and

downtime of the tool.

• Manageability – Compute and storage resources are

automatically managed by the provider. This reduces the need

to stand up vast resources to support automated testing. This

is particularly beneficial for smaller or mid-sized organizations

that do not have the infrastructure already established to

support large-scale testing solutions.

• Maintainability – Tools are automatically updated and

maintained by the provider. This reduces the maintenance and

upkeep burden for an organization.

• Accessibility – Cloud-based solutions can be accessed from

anywhere the internet is available. This creates a shared space

that all members of the team can access, which promotes

visibility and reusability.

https://www.mabl.com/low-code-test-automation
https://autonomiq.io/
https://www.katalon.com/
https://www.perfecto.io/
https://cucumber.io/docs/gherkin/
https://github.com/
https://about.gitlab.com/
https://www.jenkins.io/

BROUGHT TO YOU IN PARTNERSHIP WITH

REFCARD | CLOUD-BASED AUTOMATED TESTING ESSENTIALS

REFCARD | MAY 2022 5

In addition, many cloud-based automated testing tools include

advanced capabilities, such as Artificial Intelligence (AI) and Machine

Learning (ML). Since these cloud providers support a large number

of products (not just our own), their ML and AI models incorporate a

larger volume of data and can, therefore, be more accurate and provide

greater insights.

For example, if a cloud-based tool supports thousands of projects, the

ML model for this tool would be based on a more comprehensive set of

data compared to a company that supports only a handful of projects

in house.

CONSIDERATIONS FOR CLOUD-BASED SOLUTIONS

While cloud-based tools have a significant number of advantages, there

are also a few points that should be considered before transitioning:

• Interacting with infrastructure – Some teams may host

their testing environments on-site or on-premises. This allows

the team to use their own compute and storage resources, or

to closely mimic their production environment. These sites

or premises may not be easily accessible from the internet,

precluding the cloud-based tool from accessing the system

under test.

• Security – Some systems may be hosted in highly secure

environments that cannot be accessed from the internet

or that require storage (even of tests and test results) to be

maintained on-site. For example, proprietary information may

be maintained in on-site storage, or a product may be classified,

where an internet-based tool may not have access to the

network that the product is hosted on.

• Pricing – Teams that already have the infrastructure and

capability to support large-scale automated testing may incur

added costs when using a cloud-based solution (i.e., may pay

for a service that could be hosted in-house and integrated into

existing infrastructure for minimal cost).

Cloud-based tools can be valuable in a wide array of situations, but it is

still important to consider the specific needs of our product and ensure

that these tools integrate well into our environments and provide

maximal benefit to our testing infrastructure.

PROMINENT TOOLS

The cloud-based automated testing tools space is relatively young, but

a few products have already earned their popularity:

• mabl – A functional, cloud-based testing solution that allows

testers to create End-to-End (E2E) tests through a web-based

dashboard. These tests can be created using a browser tool

that can record actions or through API testing support. mabl

includes integration support for widely used tools such as Jira,

GitHub, GitLab, Jenkins, and CircleCI, as well as many others.

• Katalon TestCloud – A unified tool that allows testers to create,

orchestrate, and execute tests within the Katalon ecosystem.

This product integrates seamlessly with Katalon Studio and

Katalon TestOps, and also includes integration support for Jira,

GitHub, GitLab, Jenkins, and a host of other tools.

• Micro Focus UFT One – An E2E testing tool that focuses on AI

and aids developers in creating tests that increase coverage of

their products. UFT One also supports CI/CD integration with

Jenkins and version control integration with Git and Subversion.

CONCLUSION
Automated testing has taken hold as the dominant mechanism for

testing software — and for good reason. Even with advancements

such as code-based unit and integration test frameworks, creating

automated tests can still require a significant amount of prerequisite

coding knowledge. Cloud-based automated tools abstract a large

portion of these intricacies and allow testers to access their test suites

from anywhere.

Even though the cloud-based tooling space is still maturing, tools such

as mabl, Katalon TestCloud, and UTF One can provide a significant

boost in performance to both large and small teams.

WRITTEN BY JUSTIN ALBANO,
SOFTWARE ENGINEER, IBM

Justin Albano is a software engineer at IBM
responsible for building software-storage and
backup/recovery solutions for some of the largest
worldwide companies, focusing on Spring-based REST
API and MongoDB development. When not working or writing, he
can be found practicing Brazilian Jiu-Jitsu, playing or watching
hockey, drawing, or reading.

600 Park Offices Drive, Suite 300
Research Triangle Park, NC 27709

888.678.0399 | 919.678.0300

At DZone, we foster a collaborative environment that empowers developers and
tech professionals to share knowledge, build skills, and solve problems through
content, code, and community. We thoughtfully — and with intention — challenge
the status quo and value diverse perspectives so that, as one, we can inspire
positive change through technology.

Copyright © 2022 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or
by means of electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

https://www.mabl.com/
https://www.mabl.com/integrated-api-tests?hsLang=en
https://www.mabl.com/integrations
https://www.atlassian.com/software/jira
https://circleci.com/
https://katalon.com/testcloud/
https://katalon.com/katalon-studio/
https://katalon.com/testops/
https://katalon.com/integrations
https://www.microfocus.com/en-us/products/uft-one/overview
https://git-scm.com/
https://subversion.apache.org/

